Genomics and proteomics of vertebrate cholesterol ester lipase (LIPA) and cholesterol 25-hydroxylase (CH25H)
نویسندگان
چکیده
Cholesterol ester lipase (LIPA; EC 3.1.1.13) and cholesterol 25-hydroxylase (CH25H; EC 1.14.99.48) play essential role in cholesterol metabolism in the body by hydrolysing cholesteryl esters and triglycerides within lysosomes (LIPA) and catalysing the formation of 25-hydroxycholesterol from cholesterol (CH25H) which acts to repress cholesterol biosynthesis. Bioinformatic methods were used to predict the amino acid sequences, structures and genomic features of several vertebrate LIPA and CH25H genes and proteins, and to examine the phylogeny of vertebrate LIPA. Amino acid sequence alignments and predicted subunit structures enabled the identification of key sequences previously reported for human LIPA and CH25H and transmembrane structures for vertebrate CH25H sequences. Vertebrate LIPA and CH25H genes were located in tandem on all vertebrate genomes examined and showed several predicted transcription factor binding sites and CpG islands located within the 5' regions of the human genes. Vertebrate LIPA genes contained nine coding exons, while all vertebrate CH25H genes were without introns. Phylogenetic analysis demonstrated the distinct nature of the vertebrate LIPA gene and protein family in comparison with other vertebrate acid lipases and has apparently evolved from an ancestral LIPA gene which predated the appearance of vertebrates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13205-011-0013-9) contains supplementary material, which is available to authorized users.
منابع مشابه
Five-aza-2′-deoxycytidine-induced hypomethylation of cholesterol 25-hydroxylase gene is responsible for cell death of myelodysplasia/leukemia cells
DNA methyltransferase inhibitors (DNMT inhibitors) are administered for high-risk MDS, but their action mechanisms are not fully understood. Hence, we performed a genome-wide DNA methylation assay and focused on cholesterol 25-hydroxylase (CH25H) among the genes whose expression was up-regulated and whose promoter region was hypomethylated after decitabine (DAC) treatment in vitro. CH25H cataly...
متن کاملTargeting Wolman Disease and Cholesteryl Ester Storage Disease: Disease Pathogenesis and Therapeutic Development
Wolman disease (WD) and cholesteryl ester storage disease (CESD) are lysosomal storage diseases (LSDs) caused by a deficiency in lysosomal acid lipase (LAL) due to mutations in the LIPA gene. This enzyme is critical to the proper degradation of cholesterol in the lysosome. LAL function is completely lost in WD while some residual activity remains in CESD. Both are rare diseases with an incidenc...
متن کاملInterferon-Inducible Cholesterol-25-Hydroxylase Inhibits Hepatitis C Virus Replication via Distinct Mechanisms
Cholesterol 25-hydroxylase (CH25H) as an interferon-stimulated gene (ISG) has recently been shown to exert broad antiviral activity through the production of 25-hydroxycholesterol (25HC), which is believed to inhibit the virus-cell membrane fusion during viral entry. However, little is known about the function of CH25H on HCV infection and replication and whether antiviral function of CH25H is ...
متن کامل25-Hydroxycholesterol Inhibition of Lassa Virus Infection through Aberrant GP1 Glycosylation
Lassa virus (LASV) infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase (CH25H) encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC). 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting envelop...
متن کاملNovel Mutation in a Patient with Cholesterol Ester Storage Disease
Cholesterol ester storage disease (CESD) is a chronic liver disease that typically presents with hepatomegaly. It is characterized by hypercholesterolemia, hypertriglyceridemia, high-density lipoprotein deficiency, and abnormal lipid deposition within multiple organs. It is an autosomal recessive disease that is due to a deficiency in lysosomal acid lipase (LAL) activity, which is coded by the ...
متن کامل